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Abstract

Those who nowadays work on the history of advanced-level Babylonian mathematics
do so as if everything had begun with the publication of Neugebauer’s Mathematische
Keilschrift-Texte from 1935–37 and Thureau-Dangin’s Textes mathématiques babyloniens from
1938, or at most with the articles published by Neugebauer and Thureau-Dangin during
the few preceding years. Of course they/we know better, but often that is only in
principle. The present paper is a sketch of how knowledge of Babylonian mathematics
developed from the beginnings of Assyriology until the 1930s, and raises the question
why an outsider was able to create a breakthrough where Assyriologists, in spite of the
best will, had been blocked. One may see it as the anatomy of a particular “Kuhnian
revolution”.
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The background

In an obituary of Jules Oppert [Heuzey 1905: 73f] we find the following[1]:

With Jules Oppert disappears the last and the most famous representative of what
one may call the creation epoch Assyriology. When he entered the scene,
Assyriological science had existed but a few years. The decipherment of the Persian
texts, inaugurated by Grotefend in the beginning of the last century, had opened
the way; the proper nouns common to the two Persian and Assyrian versions of the
trilingual Achaemenid inscriptions provided a firm base for the determination of
the value of a certain number of signs; Rawlinson recognized the polyphonic character
of the Assyrian system, and Hincks justly defended the syllabic principle against
Sauley. After a few works on Old Persian, Oppert brought his main effort to the
Assyrian inscriptions. After having been entrusted together with Fresnel with a
mission to the Babylonian area, he published in 1859, after his return, the second
volume (actually the first in date) of his Expédition en Méslopotamie [sic] in which,
by means of recently discovered sign collections or syllabaries, he established the
principal rules of decipherment. This volume, Oppert’s masterpiece, constitutes a
turning point; it put an end to the gropings and established Assyriology definitively.

Similarly, Samuel Noah Kramer [1963: 15] states that

Rawlinson, Hincks and Oppert – cuneiform’s “holy” triad – non only put Old Persian
on firm ground, but also launched Akkadian and Sumerian on the course to
decipherment.

Kramer’s whole description of the process of decipherment of the three languages
(pp. 11–26) shows the importance during the initial phase of knowledge derived
from classical and Hebrew sources (often very approximative knowledge, as it
turned out, except for the Hebrew language and terminology) and of bi- and
trilingual texts.[2]

So much concerning the conditions for the beginning of cuneiform
scholarship. The conditions for initial work on matters connected to cuneiform
mathematics (understood broadly, as numero-metrological practice) are reflected
slightly later in Heuzey’s obituary:

Oppert’s scientific activity pointed in very different directions: historical and religious
texts, (Sumero-Assyrian) bilingual and purely Sumerian texts, juridical and divinatory
texts, Persian and neo-Susian texts, there is almost no branch of the vast literature

1 My translation, as everywhere in what follows when no translator is indicated.
2 A more detailed description of the process, confirming this picture, is found in [Sayce
1908: 7–35]. Even more detailed is [Fossey 1907: 102–244].
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of cuneiform inscriptions he has not explored. The most particular questions –
juridical, metrological, chronological – attracted his curiosity [...].

Administrative, economical and historiographic documents were indeed not only
a main source for metrology; reversely they could only be understood to the
full once the pertinent metrology itself was understood, for which reason they
were also the main motive for understanding numeration and metrology.

This is illustrated by the earliest discovery of sexagesimal counting. In
connection with work on calendaric material, Edward Hincks [1854a: 232]
describes a tablet (“K 90”) containing “an estimate of the magnitude of the
illuminated portion of the lunar disk on each of the thirty days of the month”[3]

without going into the question how its numbers were written; in a parallel
publication [1854b] “On the Assyrian Mythology” concerned with the numbers
attached to the gods he refers to the “use of the different numbers to express
sixty times what they would most naturally do” and bases this claim on the
numbers on the tablet just mentioned, where 240 is written iv (Hincks uses
Roman numerals to render the cuneiform numbers), and where “iii.xxviii, iii.xii,
ii.lvi, ii.xl, etc.” stand for “208, 192, 176, 160, etc.”. Henry Rawlinson’s contribution
to the topic in [1855] (already communicated to Hincks when the second paper
of the latter was in print, in December 1854) consists of a long footnote (pp.
217–221) within an article on “The Early History of Babylonia”, in which he states
that the values ascribed by Berossos [ed. Cory 1832: 32] to σαρος (šār), νηρος
(nēru) and σωσσος (šūši), namely respectively 3600, 600 and 60 years, are
“abundantly proved by the monuments” (p. 217), giving as further confirmation
an extract of “a table of squares, which extends in due order from 1 to 60”(pp.
218–219), in which the place-value character of the notation is obvious but only
claimed indirectly by Rawlinson.[4]

Oppert wrote a number of major papers on metrology [1872; 1885; 1894; etc.],
which confirm the picture; the sources are archaeological measurements combined
with evidence contained in written sources, mostly indicating concrete measures
rather than dealing with metrology, and comparison with other metrologies.[5]

3 Archibald Henry Sayce, when returning to the text (now identified as K 490) in [1887:
337–340], reinterprets the topic as a table of lunar longitudes (Hincks seems to be right).
4 That Rawlinson is anyhow also interested in the mathematics per se and not only as a
means for chronology (after all, he was interested in everything Assyro-Babylonian) is
however revealed by what comes next in the note, namely that “while I am now discussing
the notation of the Babylonians, I may as well give the phonetic reading of the numbers,
as they are found in the Assyrian vocabularies”.
5 Since Mesopotamian metrology varies much more over the epochs than Oppert had
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The first of these draws, inter alia, on the “Esagila tablet”, a copy from 229 BCE

of an earlier text and described by Marvin Powell [1982: 107] as

a key document for Babylonian metrology, because it 1) describes in metrological
terms a monument that has been explored and carefully measured, 2) links the
standard system of mensuration with the Kassite system, 3) makes it possible to
identify the standard cubit with the NB [Neo-Babylonian/JH] cubit, and 5) enables
us to calculate the absolute length of these units as well as the area of the i k u used
in both Sumerian-OB [Old Babylonian/JH] and in Kassite-Early NB documents

– which means that it fits precisely into the general pattern of Oppert’s and
contemporary work on metrologies, even though the full exploitation of the
document was not possible at a moment when the Esagila complex had not yet
been excavated, and when relative chronologies preceding the neo-Assyrian epoch
were still not firmly established.[6]

Over the following five decades, work with this focus was pursued by a
number of scholars – beyond Oppert also Vincent Scheil, François Thureau-
Dangin, Herman Hilprecht, Franz Heinrich Weißbach, Arthur Ungnad, François-
Maurice Allotte de la Fuÿe, Louis Delaporte, Ernst Weidner and others.[7] The
outcome was a fair understanding of the many different metrologies [Thureau-
Dangin 1909; 1921] including brick metrology [Scheil 1915b]; of the place-value
system and the function of tables of reciprocals [Scheil 1915a; 1916];[8] and of
techniques for area determination [Allotte de la Fuÿe 1915] – all (as far as allowed

imagined, it is obvious that the comparative method led him astray as often as to the
goal. The task may be claimed only to have been brought to a really satisfactory end by
Marvin Powell [1990].
6 This is well illustrated by the chapter “History and Chronology [of Chaldaea]” in the
second edition of George Rawlinson’s Five Great Monarchies of the Ancient Eastern World
from [1871: I, 149–179]. The author can still do no better than his brother Henry had done
in [1855] – all we find is a critically reflective combination of Berossos and Genesis, with
a few ruler names from various cities inserted as if they were part of one single dynasty.

This was soon to change. In [1885: 317–790], Fritz Hommel was able to locate
everything from Gudea onward in correct order; absolute chronologies before Hammurapi
were still constructed from late Babylonian fancies (Hommel locates Sargon around 3800
BCE and Ur-Nammu around 3500 and lets the Ur, Larsa and Isin dynasties (whose actual
total duration was c. 350 years) last from c. 3500 until c. 2000 BCE – pp. 167f).
7 See [Friberg 1982: 3-27].
8 Actually, Scheil’s understanding was not broadly accepted: Meissner [1920: II, 387] from
1925 does not know about sexagesimal fractions. Meissner also mixes up the place-value
and the absolute system.
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by available sources) in contexts extending from the mid-third (occasionally the
outgoing fourth) to the late first millennium BCE.

Hilprecht’s discussion of “multiplication and division tables” from [1906]
deserves special mention. It made available an important text group, but also
cast long shadows: not understanding sexagesimal fractions and thus wishing
all numbers occurring in the tables to be integers, he interpreted the table of
reciprocals as a table of division of 12,960,000 – a number he then finds (p. 29)
in an interpretation of Plato’s Republic VIII, 546B–D (the notoriously obscure
passage about the “nuptial number”). That allowed him to confirm a statement
he quotes from Carl Bezold on p. 34:

Mathematics was with the Babylonians, as far as we now know, first of all in the
service of astronomy and the latter again in the service of a pseudo-science, astrology,
which probably arose in Mesopotamia, spread from there and was inherited by the
gnostic writings and the Middle Ages [...].

In this way, Babylonian mathematical thought was made much more
numerological and linked much more intimately to esoteric wisdom than
warranted.[9]

The earliest “properly mathematical” texts

All these insights built on the combination of archaeological measurement
(of building structures and of metrological standards) with various kinds of
written documents and (with gradually dwindling importance) comparative
studies. None of this material except some tables of multiplication, reciprocals
and powers belonged to genres which were soon to be considered as “properly
mathematical” texts.[10]

A few such texts were published during the years 1900–1928. In 1900, hand
copies without transliteration of the two extensive Old Babylonian problem
collections BM 85194 and BM 85210 appeared in CT IX. However, since these

9 Esoteric numerology certainly left many traces in Mesopotamian sources – but not in
sources normally counted as “mathematical”; the only exception is a late Babylonian
metrological table starting with the sacred numbers of the gods (W 23273, see [Friberg
1993: 400]). Apart from that, even the text corpus produced by the Late Babylonian and
Seleucid priestly environment kept the two interests strictly separate.
10 I disregard the “metrological tables”, which were not yet understood as mediators
between the various metrologies and the place value system. I also disregard mathematical
astronomy, where the extension of the place value system to fractions had been understood
better [Epping 1889: 9f], [Kugler 1900: 12, 14], without this understanding being
generalized, cf. [Scheil 1915a: 196].
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texts could be judged by Ernst Weidner [1916: 257] to be “the most difficult
handed down in cuneiform”, it is barely a wonder that no attempt was made
to approach them for long.[11] In [1916: 258], Weidner announced to have lately
“had the occasion to copy a whole sequence of similar texts”, and he gave a
transliteration and an attempted translation of two sections from one of them,
the tablet VAT 6598; Weidner’s contribution was immediately followed up by
Heinrich Zimmern [1916] and Ungnad [1916], both of whom improved the
understanding of the text and the terminology in general, drawing on the same
text and on the texts published in CT IX, from which Ungnad transliterated and
translated a short extract in [1916] and another one in [1918].

The next step was C. J. Gadd’s publication of a first fragment of BM 15285,
a text about the subdivision of a square into smaller squares, smaller triangles,
etc. This text was quite different from those published previously, but a few terms
were shared, which confirmed readings proposed by Weidner and Zimmern.

Also in [1922: pl. LXI–LXII], Thureau-Dangin published hand copies of AO
6484, a major Seleucid problem text, but without seeing more in it than
“arithmetical operations”.

Finally, Carl Frank published six mathematical texts from the Strasbourg
collection in [1928], with transliteration and attempted translation.

By then, however, the study of cuneiform mathematical texts had also been
taken up at Neugebauer’s Göttingen seminar. In 1985 Kurt Vogel told me about
the immense astonishment when one morning Hans-Siegfried Schuster related
that he had discovered solutions of second-degree equations in a cuneiform text.
Vogel did not date the event, but it must have taken place in late 1928 or (most
likely, see below, note 36) very early 1929.

Confronted readings

Before we shift our attention to this new phase, we may look at what had
been achieved – and what not yet – up to then by confronting Weidner’s
interpretation and the commentaries it called forth with that of Neugebauer of
the same text in MKT.[12] Some of the differences, we should be aware, come

11 Weidner mentions as the only exception “an occasional notice” by Hommel in a Beilage
to the Münchener Neuesten Nachrichten 1908, Aug. 27, Nr. 49, p. 459, which I have not seen.
He says nothing about its substance being in any way important, only that it interprets
the final clause ne-pé-šum of problems as “quod erat demonstrandum”.
12 This is certainly “whiggish” historiography – and it has to be, if our aim is to locate
Neugebauer’s achievement in its historical context.
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from the fact that Neugebauer’s transliterations follow the conventions of
Thureau-Dangin’s Syllabaire accadien, which was only published in [1926].

This is Weidner’s transliteration and translation from [1916: 258f] (left) and
Neugebauer’s treatment of the same text in MKT (I, 280, 282) (right):[13]

1. 2 ú da 40 ú šir zi-li-ip-tu-šu en-nam
za-e 10 sag

2 Ellen (?) Seite (?), 40 Ellen Tiefe
(?). Seine Diagonale berechne du. 10
(ist) die Höhe

2. šá-ne 1 40 ta-mar ka-bi-rum 1 40 a-na
40 ú šir i-ši-ma

als Quadrat 1 40 erhältst du. Die
Quadratfläche 1 40 auf 40 Ellen Tiefe
(?) ist sie,

3. 1 6 40 ta-mar a-na tab-ba 2 13 20
ta-mar a-na 40 ú šir

1 6 40 erhältst du. Zu verdoppeln,
2 13 20 erhältst du. Zu 40 Ellen Tiefe
(?)

4. dah-ha 42 13 20 zi-li-ip-to ta-mar
ne-pi-šum

hinzufügen, 42 13 20 als Diagonale
erhälts du. (Also) ist es gemacht
worden.

1. 2 kùš dagal 40 kùš sukud
sí-li-ip-ta-šu en-nam za-e 10 sag

2 Ellen Weite, 0;40 Ellen(sic) Höhe,
Seine Diagonale (ist) was? Du? 0;10,
die Breite

2. šu-tam-hir 1,40 ta-mar qà-qá-rum 1,40
a-na 40 kùš sukud i-ši-ma (?)

quadriere. 0;1,40 siehst Du (als)
Fläche. 0:1,40 mit 0;40 Ellen(sic) Höhe
multipliziere und (?)

3. 1 6 40 ta-mar a-na tab-ba 2,13,20
ta-mar a-na 40 kùš sukud

0;1,6,40 siehst Du. Mit 〈2〉 verdopple.
0;2,13,20 siehst Du. Zu 0;40 Ellen (sic)

Höhe
4. dah-ha. 42,13,20 sí-li-ip-ta ta-mar

ne-pé-šum
addiere. 0;42,13,20 (als) Diagonale
siehst Du. Verfahren.

The drawing on the tablet, as rendered by Weidner (left) and Neugebauer
(right)

As already seen by Weidner [1916: 359] (the diagram, indeed, leaves little
doubt), the text contains a “calculation of the diagonal of a rectangle whose sides
are given”. If the given sides are a and b, Weidner states the diagonal to be

13 Here and in what follows, when quoting transcriptions and transliterations (also of single
words and signs), I follow the conventions of the respective originals. When speaking
“from the outside”, on my own, I follow modern conventions. Since the delimitation is
not always clear, some inconsistencies may well have resulted.
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, whereas Neugebauer gives ;[14] Weidner’s divisor 3600 is aa 2a b 2

3600
a 2a b 2

symptom that he writes at a moment when he has certainly more or less
understood the use of the place value system even for fractions but still writes
in a spirit untouched by this understanding.[15]

Some of the other differences between the two transliterations hinge on
different ways to render the same cuneiform character even though it is
understood in the same way, as can be seen from the translations. For instance,
Weidner has Ú, the sign name, where Neugebauer has k ù š , the Sumerian
reading of the sign when meaning a cubit (“Elle”), as it had been identified in
the meantime.[16] Such changes are immaterial for our present concern.

Somewhat more pertinent is the disagreement in the first line concerning
DA/d a g a l . These are different signs but rather similar in the Old Babylonian

14 Neugebauer tries to make sense of this impossible formula by interpreting it as an

approximation to ; [Neugebauer 1931a: 95–99] explains the origin of the guess,a 2a b 2

2a 2 b 2

which he finds in the music theory of Nicomachos and Iamblichos – classical Antiquity
remained a resource when other arguments were not available.

Difficulties in the handling of the sexagesimal system may be the reason that Weidner
did not discover that the formula – adding a length and a volume – is impossible because
a change of measuring unit would not change the two addends by the same factor (this
is the gist of “dimension analysis”).
15 In detail: Weidner supposes the dimensions of the rectangle to be 10 and 40, even though
the initial “2 cubits” should make him understand that 10 stands for 10´, and 40 in
consequence (if the calculations are to be meaningful) for 40´ – both corresponding to
the unit n i n d a n (1 n i n d a n = 12 cubits); instead he wonders (col. 259) what these 2
cubits may be. Weidner therefore supposes the product to be 4000, about which he says
that “it is written in cuneiform as 1 6 40, i.e., 1 (3600) + 6 ( 60) + 40. But this number

can also be understood as 1+6( )+40( ) = = 1,11”.1

60

1

3600

4000

3600

A small remark on notations: the ´–´́ notation was used (and possibly introduced)
by Louis Delaporte in [1911:132] (´ and ´́ only); Scheil [1916: 139], immediately followed
by Ungnad [1916: 366], uses ´, ´́ and °, as does later Thureau-Dangin. Strangely,
Neugebauer believed in [1932a: 221] that the °-´-´́ notation had been created “recently”
by Thureau-Dangin (similarly MKT I, p. vii n. 5); I have not noticed references from his
hand to [Scheil 1915a], but he had referred to Ungnad [1916] on several occasions – e.g.,
[Neugebauer 1928: 45 n.3]. Neugebauer’s own notation goes back at least to [1929: 68,
71].
16 See, e.g., [Thureau-Dangin 1921: 133].
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period.[17] Weidner’s mistake illustrates the difficulty of reading a cuneiform
text whose genre and terminology is as yet unknown. Fortunately for him, the
two words are more or less synonymous according to his dictionary [Delitzsch
1914: 130f], respectively “side” and “breadth”.

Most significant are the cases where Weidner, as he states himself, had to
guess at a meaning from the context – the context presented by the present text
as well as that of the CT-IX texts, which Weidner had evidently studied intensely
without getting to a point where he could make coherent sense of them.

This starts with ŠIR (now UZU = š i r 4 ), which again is similar to the sign
read by Neugebauer (SUKUD, meaning “height”[18]); since the sign is often
found in CT IX, Weidner concludes that it must refer to a dimension, and he
finds in Rudolph Brünnow’s list from [1889: 200 #4558] that it may stand for
naqbu, “depth”.[19] This seems to make sense, after which the interpretation
of ziliptum “follows by itself from the context”. Neugebauer’s spelling si-li-ip-ta
corresponds to modern orthography, but even he is not able to connect the word
to the verb salāpum, whose sense “cross out” was not yet established – at least
still not in [Bezold 1926: 113, 238].

The next word en-nam, thus Weidner with many references to CT IX, “must
mean ‘calculate’”. Neugebauer’s “was” corresponds to what he had observed
in [1932b: 8] – that e n . n a m stands where other texts have the interrogative
particle mı̄nûm.[20]

Weidner’s reading of za-e as “you” is correct, and conserved in MKT.
However, Weidner connects it to his preceding presumed imperative; it was
Ungnad [1916: 363f] who pointed out that this word, here and often in the CT-IX
texts, marks the beginning of the calculation. Ungnad does not feel sure that

17 For such similarity I rely on [Labat 1963].
18 This reading goes back to [Zimmern 1916: 323].
19 Now nagbu, interpreted “spring, fountain, underground water” ([CAD XI, 108], cf. [AHw
710]). The error was pointed out by Ungnad [1916: 363], who also proposed the reading
s u k u d , “height”.
20 In [1929: 88], Neugebauer still accepted Weidner’s interpretation. Arguments that a
verbal imperative was most unlikely and an alternative orthography for mı̄nûm
unsupported by other evidence were first given by Thureau-Dangin [1931: 195f]; the idea
that it is a (pseudo-)Sumerogram for that word was first hinted at by Albert Schott, see
[Neugebauer 1932b: 8 n. 18].
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a Sumerian z a . e , “you”, is meant, and as we see Neugebauer adopts his
doubt.[21]

šá-ne is interpreted by Weidner as “square” simply because 1 40 is the square
of 10; he confesses not to be able to explain it further; the correct reading of the
sign group as šu-tam-hir, adopted by Neugebauer, was suggested by Zimmern
[1916: 322f] and explained as the “imperative of a [verb] šutamhuru, ‘to raise to
square’ (literally let stand against, let correspond to each other)”.

The ensuing ka-bi-rum is interpreted (reasonably, if only the reading had been
correct) as “breadth”, and Weidner then supposes that it refers to the square
understood as a “broad rectangle”. The proper reading (as given in MKT) means
“ground” (in mathematical texts the basis of a prismatic volume).

Weidner does not comment upon his interpretation of ta-mar in line 2 (and
again in line 3) as “erhältst du”, but it is obviously derived from the context.
Neugebauer’s philologically correct reading “you see” goes back to Ungnad [1916:
364].

In the end of line 2, Weidner understands i-ši-ma as “it is”, which forces him
to understand a-na (translated “auf”) as a multiplication (without specifying that
this is what he does).[22] Zimmern [1916: 322] and Ungnad [1916: 364] point
out that i-ši is the imperative of našûm, “to raise”, and that this term (always
“raising to”, which explains a-na) is used repeatedly for multiplication in CT IX;
this understanding (but not the translation) recurs in MKT.

In the next line, the interpretation of tab-ba as doubling is correct, and goes
back to [Delitzsch 1914: 152]; only Neugebauer’s familiarity with a much larger
range of texts allows him to see that the scribe has omitted a number 2 – yet
even he, trapped by the interpretation of the operation as just multiplication,
does not see that ana should be taken in its ordinary sense “to” (doubling “until
twice”).

Also the interpretation of dah-ha as addition is correct.[23] The derivation
of the closing phrase ne-pí-šum from the verb epēšum, “to do”/“to proceed” is
correct too, even though the actual grammatical interpretation is mistaken, as

21 No longer needed, since other texts have the Akkadian atta.
22 I wonder whether Weidner was led to this conclusion by numerical necessity alone
(1 6 40 being indeed the product of 40 and 1 40) or by the parallel use of επι in Greek
mathematics.
23 Unfortunately, Weidner’s commentary equates this Sumerian word with esēpu, building
on a hint in Delitzsch [1914: 134]; Delitzsch’s supportive examples are conjugated forms
of wasābum, also the actual equivalent in Old Babylonian mathematical texts.
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pointed out by Zimmern [1916: 322] and Ungnad [1916: 364] ; they both correct
to “Verfahren”, “way to proceed”, as taken over by Neugebauer.

Weidner’s article deals not only with this but also with another section of
the same tablet, in which a different approximation to the same diagonal is found,

namely – much better, both by being meaningful and by being morea
b 2

2a

precise even with the actual numbers and unit. On the tablet, this section comes
first, and with hindsight it seems a reasonable assumption that the second method
(the one Weidner presents first) is a second approximation gone awry.[24]

In connection with the first approximation, Weidner makes only two new
terminological observations, one wrong and one slightly problematic. Firstly,
he translates the passage ½ 2 30 dùg-bi 1 15 ta-mar as “Die Hälfte von 2 30, als
seinen Quotienten 1 15 erhältst du”, believing from his inspection of the CT-IX
texts (probably from parallels to the present passage) that DÙG stands for the
result of a division, and taking bi to be the Sumerian possessive suffix (thus “its
quotient”). Zimmern [1916: 322] corrected this Sumerographic reading, replacing
it by phonetic Akkadian hi-pí “break” (viz “break off ½”) – cf. also [Ungnad 1916:
364 n.5] (the signs read by Weidner and Zimmern are the same).

Secondly, Weidner [1916: 261] states that “igi-dú-a with a number enclosed
between igi and dú means substantially [sachlich] that the ensuing higher power
of 60 is divided by the enclosed number”. Zimmern [1916: 324] specifies that
igi must be understood as “part”, and dú (d u 8 since Thureau-Dangin’s Syllabaire)
as “to split”, while Ungnad [1916: 366] suggests an interpretation that comes
close to the determination of the reciprocal of the enclosed number[25] – clearly
the understanding of the Old Babylonian calculators, as was soon to be known
with certainty, whereas that of the Ur III inventors had probably been the
corresponding fraction of 60 (cf. [Scheil 1915a] and [Steinkeller 1979]) – closer
indeed to Weidner’s understanding without being identical.

Beyond the attempted “substantial” and philological interpretation of the
mathematics of the text, Weidner [1916: 259] also speaks about its purpose:

Oriental science was never undertaken for its own sake but was always science with
a purpose [Tendenzwissenschaft], and therefore the present piece of text was of course
not written down by the Akkadian in order to show how right triangles were

24 A possible interpretation is offered in [Høyrup 2002: 271f]
25 He does not use the term “reciprocal” but speaks about the operation of dividing 1
by the number in question.
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calculated in his times, but it must have had a very real background. It is probably
the calculation of an architect or a surveyor, who has then executed his task in
agreement with the calculation.

Later, as a commentary to the only approximate character of the calculations,
Weidner continues thus:

However, if we take into account, as already pointed out, that this is nothing but
applied mathematics in the service of the architect and the surveyor, then we arrive
at a milder judgement. We know sufficiently well, indeed, that these gentlemen do
not always insist on maximal precision in their work.

The insight that the text might be a school problem had to wait.
Beyond objections and direct commentaries to Weidner, some further

important observations concerning the terminology are made by Zimmern and
Ungnad. Zimmern [1916: 323] notices that two different terms express addition,
dah-ha[26] and UL.GAR. Ungnad [1916: 367] points out hat there are also two
ways to express subtraction, the operation BA.ZI (Akkadian nasāhum, “to tear
out”) and the observation that one entity exceeds (DIR) another one by so and
so much; he also mentions KIL.KIL (NIGIN) (col. 366f) as a term for squaring
and reminds of the already known use of ÍB.DI (í b . s i 8 ) for “square root”.

Both also end their articles by hoping for new texts and new insights in the
area. Apart from a transliteration and translation of another problem from CT IX
(namely, BM 85194, obv. III, 23–30) produced by Ungnad in [1918], it lasted quite
a while before this wish was fulfilled.

As already mentioned, the next text to be discussed was a large fragment
of BM 15285, a text about the subdivision of a square in various smaller figures
[Gadd 1922]. It contains drawing of these together with verbal descriptions, and
even though drawing and description are only conserved together in a few cases,
Gadd was able to make new observations [1922: 151] on the terminology – not
least to identify mithartum with a square, which, as he states, agrees perfectly
with Zimmern’s reading šutamhurum, and to show that ÍB.DI (í b . s i 8 ) was used
ideographically for mithartum. He was also able to confirm the interpretation
of kippatum[27] as “ring”/“circle”, as derived already by Thureau-Dangin on
the basis of non-mathematical texts, and to read SAG.KAK as “triangle”.

26 To this he links Akkadian ruddûm instead of wasābum – a mistake in the context of the
mathematical texts, as it was to turn out when more of these became known.
27 Gadd says kibbatum, but that orthography has already disappeared in [Bezold 1926:
147].
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Also in 1922, Thureau-Dangin published a hand copy of AO 6484, a fairly
long mathematical text from the Seleucid era, no. 33 of 58 texts from the
collections of the Louvre and the Musée du Cinquantenaire. However, all he
has to say about it is that it contains “arithmetical operations (fragmentary tablet).
Probably from the first half of the second Seleucid century”. In spite of his
interest in anything that had to do with mathematics, evident since his astute
analysis of a field plan from Ur III in [1897], he did not return to the text in the
following years, which can probably be taken as evidence that he understood
no more than what he had already said in 1922.

Then we come to Frank’s edition from [1928][28] of 50 texts from the
Strasbourg collection, six of which were mathematical. Frank offers hand copies,
transliteration and German translation of some of the texts, partial transliteration
mixed with explanatory translation of the others – and a short general
commentary (pp. 19f). In this commentary it is stated that

the following texts, like those close to them in CT IX, cannot yet be understood in
all details. More intensive work than what is intended here, and indeed on all
“mathematical” texts, would in itself be most welcome.

The quotes around “mathematical”, however, point back to an important insight,
entirely missed in 1916: that these texts are Rechenaufgaben, that is, school texts.

Neugebauer enters the game

Very soon – as a matter of fact almost immediately – more intensive work
was indeed taken up. Neugebauer had already published a paper in [1927] about
the origin of the sexagesimal system, and in [1928] a short note from his hand
pointed out that the approximation discussed second in [Weidner 1916] might
be meant as an approximation to the exact value predicted by the Pythagorean
theorem; he also suggested that both Greek geometry and the Indian śulba-sūtras
might have borrowed from the Babylonians. The watershed was [Neugebauer
1929], appearing in the first issue of the Quellen und Studien B[29] and dealing

28 According to what is written on p. 6, the hand copies were made in 1914, after which
Frank had no more access to the tablets; he only received his old copies and notes in 1925,
after which he could resume working on them. Actually, what Frank received through
the mediation of a friend were only draft hand copies; what he had originally prepared
for an edition arrived too late [Waschow 1932a: 211], cf. [Thureau-Dangin 1934].
29 Full title Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik.
Abteilung B: Studien.
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with the mathematical Strasbourg texts. How much had happened can be
illustrated by a confrontation of Frank’s text of no. 10 with Neugebauer’s new
translation [1929: 67f] and transliteration (MKT I, pp. 259f) (the article from 1929
brings a translation only and a handful of notes correcting Franks transliteration).
The figure in Neugebauer’s first line is taken from his transliteration, but
corresponds to what is found in his translation.

1 Oben Zahlen: 1, 3; 783, 1377.
2 sag-gi-gud(!) (so wohl, nicht bi) ina

libbi 2 íd-meš 783 a-šà(g) [sa]g(?)
ein Viereck (ummatu), darinnen 2
‘Flüsse’, 738 das erste Feld,

3 1377 a-šà(g) šanūu ... 3 (?) gál uš-ki
...

1377 das zweite Feld ... 1/3 untere
Länge ...

4 uš-an-na-ta sag(!)-an-na eli RI
dirig-a

von der oberen Länge an die obere
Breite größer als RI

5 ù RI eli sag-ki-ta dirig gar-gar ... igi
(?)

und RI größer als die untere Breite ...
6 uš-ne-ne sag-meš ù RI en-nam

Die Längen, Breiten und RI berechne.

7 za-e ak-da-zu-de 1 ù 3 he-ga[r]
Wenn du dabei (so) verfährst: 1 und
3 (seien) angesetzt(?);

8 1 ù 3 gar-gar 4 igi 4 dù-ma 15
1 u. 3 addiert = 4; (60) durch 4
dividiert = 15;

9 15 a-na 36 nim 540 in-se 540 a-n[a]
15 auf 36 erhöht gibt 540; 540

10 1 nim 540 in-se 540 a-na 3 nim 1620
auf 1 erhöht gibt 540; 540 auf 3
erhöht = 1620;

11 540-ta sag-an-na eli RI dirig
um 540 ist die obere Breitseite größer
als RI;

12 1620 ta (?) RI eli sag-ki-ta dirig
um 1620(?) ist RI größer als die
untere Breitseite.

13 igi 1 dù 1 a-na 783 nim
Divisor 1. 1 auf 783 erhöht

1 figur
2 SAG-KI-GUD i-na libbi 2 id-meš 13,3

a-šà an
Ein Viereck, darinnen zwei Flüsse,
13,3 (= 783) die obere Fläche,

3 22,57 a-šà 〈ki-〉2 i[gi] 3 gál uš ki
i-n[a]

22,57 (=1377) die zweite Fläche [und]
ein Drittel der unteren Länge für

4 uš an-na ša sag an-na u-gù RI dirig
die obere Länge, die obere Breite
größer als die Trennungslinie

5 ú RI u-gù sag ki-ta dirig gar-gar [36]
und die Trennungslinie größer als die
untere Breite, zusammen

6 uš-ne-ne sag-meš ù RI en-nam
Die Längen, Breiten und die
Trennungslinie berechne.

7 za-e ki-da-zu-dè 1 ù 3 hé-gar
Du verfährst so: 1 und 3 lege (?)

8 1 ù 3 gar-gar 4 igi 4 du8-ma 15
1 und 3 zusammen (ist) 4. Das
Reziproke von 4 (ist) 0;15 (= 1/4) und

9 15 a-na 36 nim 9 in-sum 9 a-na
0;15 (= 1/4) mit 36 erhöht gibt 9. 9
mit

10 1 nim 9 in-sum 9 a-na 3 nim 27
1 erhöht gibt 9. 9 mit 3 erhöht 27.

11 9 ša sag an-na u-gù RI dirig
Um 9 ist die obere Breite über die
Trennungslinie größer,

12 27 ša RI u-gù sag ki-ta dirig
um 27 ist die Trennungslinie gegen
die untere Breite größer:

13 igi 1 du8 1 a-na 13,3 nim
Das Reziproke von 1 ist 1. Mit 13,3 (=
783) erhöht
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14 783 in-se igi 3 dù 20 a-na
gibt 783. Divisor 3 (d. h. 60: 3) 20 auf

15 1377 nim 27540 in-se
1377 erhöht macht 27540.

Rs.
1 783 eli 459 en-nam dirig

783 ist größer als 459: berechne die
Differenz.

2 324 dirig 1 ù 3 gar-gar 4
324 ist die Differenz. 1 und 3
addiert:=4;

3 bar(!) (= mišil) 4 (!) QU 2 igi 2 dù 30
a-na 324

die Hälfte von 4 geteilt: 2; (60) durch
2 dividiert = 30, auf 324

4 9720 in-(se)-ma nu- GIR 9720 nu-dù
gibt 9720, nicht ... ; 9720 nicht teilbar.

5 en-nam a-na 9720 he-gar ša 540 in-se
berechne. Zu 9720 soll gelegt
werden, ‘daß, was 540 gibt’.

6 200 he-gar igi 200 dù 18 in-še
200 sei gelegt, durch 200 dividiert
gibt 18(?);

7 18 a-na 1 nim 18 uš-an(!?)-na 18
18 auf 1 erhöht: 18 die obere
Langseite; 18

8 a-na 3 nim 54 uš-ki us-ki-ta
auf 3 erhöht: 54 die untere Langseite;
von (?) der unteren Langseite

9 mišil(!) 36 sag(?)-ne 18 (statt 17!)
a-na 72 nim

die Hälfte von 36 die Breiten(?) 18(!),
auf 72 erhöht

10 1296 i-na 36 a-šà(g) dù 864
1296; durch 36 Felder(?) teilbar;

11 igi 72 ba-dù 50 a-na 864 nim
864 durch 72 teilbar; 50 auf 864
erhöht

12 43 200 (!) in-se 22 4a-na 26(!)
dah-hi-ma 48 GAB(?)

gibt 43200 (!); 22 zu 26 (!)
hinzugefügt = 48, teilbar (?),

13 48 sag-an-na 12 a-na 27 dah
48 obere Breitseite; 12 zu 27
hinzugefügt

14 13,3 in-sum igi 3 du8 20 a-na
gibt 13,3(=783). Das Reziproke von 3
(ist) 0;20 (= 1/3). Mit

15 22,57 nim 7,39 in-sum
22,57 (=1377) erhöht gibt 7,39
(=459).

Rs.
1 13,3 u-gù 7,39 en-nam dirig

13,3 (= 783) gegen 7,39 (= 459)
berechne den Überschuß.

2 5,24 dirig 1 ù 3 gar-gar 4
5,24 (= 324) ist der Überschuß. 1 und
3 zusammen (ist) 4.

3 1/2 4 gaz 2 igi 2 du8 30 a-na 5,24
Halbiere 4 (das ist) 2. Das Reziproke
von 2 (ist) 0;30 (= 1/2). Mit
5,24(=324)

4 2,42 in〈-sum〉-ma nu-GÌR 2,42
nu-du8

gibt 2,42 (= 162), nicht .... . 2,42 (=
162) nicht teilbar.

5 en-nam a-na 2,42 hé-gar ša 9 in-sum
Berechne mit 2,42 (= 162) gelegt,
was 9 gibt.

6 3,20 hé-gar igi 3,20 du8 18 in-sum
0;03,20 (= 1/18) gelegt. Das
Reziproke von 0;03,20 (= 1/18) gibt
18.

7 18 a-na 1 nim 18 uš an-na 18
18 auf 1 erhöht (ist) 18. Die obere
Länge (ist) 18.

8 a-na 3 nim 54 uš ki {uš ki-ta}
Mit 3 erhöht: 54 (ist) die untere Länge
von der [oberen] Länge aus

9 ½ 36 gaz ne 17(sic) a-na 1,12 nim
Halbiere die Breite 36. 18 mit 1,12 (=
72)

10 21,36 i-na 36 a-šà du8 14,24
(ist) 21,36 (=1296). Von 36,00 (=
2160) subtrahiert (ist) 14,24 (= 864).

11 igi 1,12 uš du8 50 a-na 14,24 nim
Das Reziproke von 1,12 (= 72), der
Länge, ist 0;00,50 (= 1/72). Mit 14,24
(= 864) erhöht

12 12 in-sum 12 a-na 36 dah-ma 48
gibt 12. 12 mit 36 addiere. 48 [ist es.]

13 48 sag an-na 12 a-na 27 dah
48 die obere Breite, 12 mit 27 addiert:
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14 39 RI 12 sag-ki-ta in-se
39 RI, gibt 12 von der unteren
Breitseite aus.

14 39 RI 12 sag ki-ta in-sum
39, die Trennungslinie, von 12,
der unteren Breite, gibt es.

The most striking difference between the two translations is probably that
Neugebauer conserves the sexagesimal place value notation (though still,
probably as help to readers not accustomed to it, translating parenthetically into
decimal notation). This is in any case the reason he gives to make a revised
translation instead of just copying Frank, and we see indeed that Frank time
and again locates the numbers in a wrong sexagesimal order of magnitude, which
did not facilitate his understanding of this very complicated procedure.[30] Once
this was corrected, Neugebauer was also able to correct a number of Frank’s
readings – but this was, if we are to believe his words, at least in the main a
secondary effect of getting the numbers right.[31]

Of particular importance was Neugebauer’s insight that i g i n should be
understood as the reciprocal of n. As we have seen, this almost coincides with
what Ungnad had said in 1916 (but not fully, cf. below, note 43). However,
Neugebauer’s explanation was much more transparent, and from now on it was
generally accepted.[32]

From 1929 to 1935 there were few important but a number of less decisive
changes in Neugebauer’s translation. In obv. 2, the quadrangle becomes a
trapezium, and the rivers become strips – but both in agreement with the
commentary from 1929, there is no change in the interpretation. Obv. 4 becomes
clearer, “die obere Länge. Was die obere Breite über die Trennungslinie
hinausgeht”, and the beginning of obv. 5 and a number of similar passages are
modified correspondingly. In obv. 5 and elsewhere, “zusammen” becomes
“addiert, and in obv. 6 and elsewhere the imperative “berechne” for e n . n a m
becomes “was”, in agreement with the understanding of this term as a logogram
for mı̄nûm. In obv. 7, “Du verfährst so” becomes “Du bei deinem Verfahren”,
in better agreement with the Sumerian expression and indeed a perfect translation

30 In MKT I, p. 263, Neugebauer characterizes it as umwegig, “roundabout”. A possible
understanding of the underlying idea, based on a proposal by Jöran Friberg, is in [Høyrup
2002: 241–244]. The procedure itself was perfectly understood by Neugebauer
31 The interpretation of RI as “Trennungslinie”, the parallel transversal dividing the
trapezoidal quadrangle into two strips, is probably an exception to this rule; according
to p. 70, n. 14 it was due to V. V. Struve.
32 As I have experienced several times, this does not mean that today’s Assyriologists are
generally familiar with the place value system. Indeed, unless they work on astronomical
texts or mathematical school texts (very few do), they never see it in use.
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of the corresponding Akkadian phrase atta ina epēšika, with which Neugebauer
was now familiar; further, “lege” becomes “mögest du nehmen”, in better
agreement with the precative prefix h e but less close to the semantics of g̃ a r ;
similarly elsewhere. In obv. 8, “Das Reziproke von 4 (ist) 0;15” becomes “Das
Reziproke von 4 gebildet und 0;15 (ist es)”; this at least renders the presence
of a verb d u 8 , even though it semantics (“split”/“detach”, correctly described
by Zimmern, cf. above) is not respected[33] (nor the imperative found in parallel
syllabic texts); similarly elsewhere. In obv. 9, a change from literal to “substantial”
translation takes place, and “erhöht” becomes “multipliziert”. In rev. 3, on the
other hand, “halbiert” becomes “abgebrochen” – here, the “substantial”
translation is replaced by a literal one. Rev. 5 becomes “Was mit 2,42 sollst du
nehmen, das 9 gibt”, both clearer and closer to the original (apart from the
semantics of g̃ a r ) than the 1929 version. In rev. 8, MKT understands that the
repetition in the end is a dittography, and the attempted repair from 1929
disappears. In rev. 9, “subtrahiert” becomes “brich ab”, an attempted return from
“substantial” to literal translation – not successful, “brich ab” is used in the
preceding line and elsewhere for g a z /hepûm, while d u 8 elsewhere designates
the “detaching” or “splitting off” of a reciprocal (rendered “substantially” in
MKT by “gebildet”).[34] In rev. 12, “mit 36 addiere” becomes “zu 36 addiere”,
which fits the preposition ana better but still conflates the symmetrical operation
g̃ a r . g̃ a r , connected with u (“and”), and the asymmetric operation d a h ,
connected with ana; similar rev. 13.

In the programmatic statement for MKT (I, p. viii) it is said that “in principle,
the translation is obviously literal”,[35] but then explains why this principle
cannot always be respected – a dilemma every translator knows too well. As
we see, the 1929 version followed the same rule – but not in the same way;
sometimes, MKT becomes more literal than the early translation, sometimes less.
For the purpose of understanding what Neugebauer saw as the mathematical
structure of the texts, this was immaterial.

33 d ù , we remember, had become d u 8 in Thureau-Dangin’s reform.
34 Footnote 5a in [Neugebauer 1930a: 122] reveals that “subtrahiert” was chosen originally
because Neugebauer had mistakenly believed to improve Frank’s reading a-šà(g) dù by
changing it into usuh. The same note shows that Neugebauer is now perfectly aware
that the correct literal translation would be “abgespalten”; we may perhaps presume the
deviating translation in MKT to be nothing but a slip.
35 “Die Übersetzung ist selbstverständlich im Prinzip eine wörtliche”.

- 16 -



The 1929-article also dealt with Frank’s text no. 8, in front of which Frank
had given up, offering no transliteration and only translation of small isolated
bits. The text is indeed very difficult, firstly because it is badly broken, secondly
because it gives only problem statements (fortunately illustrated by diagrams)
but no indication of the procedure. Also fortunately they can be arranged in
groups that belong together. Taking advantage of this, Neugebauer succeeded
in reconstructing the problems, and showed that they presuppose the ability
to solve mixed second-degree equations; in the final paragraph (pp. 79f) he
summarized the outcome of the analysis:

One may legitimately say that the present text presents us with a fair piece of
Babylonian mathematics that enriches our all too meagre knowledge of this field with
essential features. Quite apart from the use of formulas for triangle and trapezium
we see that complex linear equation systems were drawn up and solved, and that
the Babylonians drew up systematically problems of quadratic character and certainly
also knew to solve them – all of it with a computational technique that is wholly
equivalent to ours. When this was the situation already in Old Babylonian times,
in future one will have to learn to look at the later development with different eyes.

In a note added after the proofs were finished (that is, in March 1929),
Neugebauer points out that the solution of a problem from CT IX (namely BM
85194, rev. II, 7–21) shows how to solve quadratic equations, and acknowledges
the decisive contribution of Schuster.[36] Schuster himself published an analysis
of the second-degree igûm-igibûm problems from the Seleucid text AO 6484 in
the following issue of Quellen und Studien B [1930].

In the first issue, Neugebauer and Struve [1929] had published an article
purportedly dealing with the Babylonian treatment of the geometry of the circle,
actually also with the truncated cone as well as with other configurations that
allowed Neugebauer to establish UR.DAM as a term for the height in a plane
or solid figure.[37] Apart from establishing which mathematical insights, method
and “formulae”[38] were used in the texts, this and subsequent publications
in Quellen und Studien B[39] (and one in Weidner’s Archiv für Orientforschung,

36 This is why Schuster’s discovery should probably be dated in early 1929.
37 Actually, verbal forms of warādum (“to descend”) are involved, but for the immediate
technical purpose this was not decisive, as observed by Thureau-Dangin [1932b: 80] in
the note where he made the grammatical analysis of the term.
38 In the sense of “standard schemes” – no symbolic writing was of course intended as
far as the Babylonians were concerned.
39 For instance [Schuster 1930], [Neugebauer 1932b], [Waschow 1932a].
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namely [Waschow 1932b]) thus established the meaning of a number of technical
terms while giving more precision to earlier proposals or putting them on firmer
ground. Thureau-Dangin [1931: 195] was thus mistaken when believing in a kind
of division of labour, where he was going to take care of terminology and
grammar and Neugebauer of the substance.[40] As it turned out, he was also
mistaken on his own account, from [1932a] onward he too was to take up both
aspects of the texts – and in a note from [1933a: 310], Neugebauer could justly
point out that a philological disagreement between the two was due to a
“substantial” disagreement about the construction of a fortification.

Beyond mathematical substance and terminology, Neugebauer and the other
contributors to Quellen und Studien also elucidated the historical setting of the
mathematical texts, to the very limited extent it could at all be done at the
moment.[41]

In [1932b: 6f], Neugebauer made a first (fully adequate) division of the Old
Babylonian material into two groups, represented respectively by the Strasbourg
texts and the CT IX-texts. He further correctly suggests that the former are
slightly older and the latter slightly younger, and even (probably also correct,
see [Goetze 1945: 149]) that the Strasbourg texts are from Uruk, and that AO
8862, though not properly a member of the Strasbourg group, is still likely to
be related to it.

Negatively, Neugebauer points out in the conclusion of the same paper (p.
24) that the Old Babylonian mathematical texts are wholly unconnected to
astronomy, and that they go far beyond the practical concerns of surveying and
accounting. This was a rebuttal of opinions held by many Assyriologists at the
time, expressed for instance by Bruno Meissner [1920: II, 380] – cf. also [Weidner
1916: 259] as quoted above, and Hilprecht quoting Bezold in note 7. Already
in [1929: 73] Neugebauer had pointed out that the Strasbourg problems were

40 “[...] les études d’O. Neugebauer, qui ont pour objet plutôt le fond que la forme des
textes, apportent au philologue d’utiles données”
41 This limitation was emphatically pointed out by Neugebauer in [1932b: 24]. In [1934a:
204], he was perhaps even more emphatic when pointing out that “we still know
practically nothing about how Babylonian mathematics was situated within the overall
cultural framework”.

We may take it as an expression of the same explicitly agnostic attitude that
Neugebauer never spoke of Babylonian “mathematicians”. We may recognize mathematics
in the texts, but nothing was known about the social role of their authors, in particular,
whether any social role or identity (even a part-time role or an aspect of identity) would
allow this characterization.
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constructed in such a way that they produced neat solutions – which implies
that they were constructed, and thus that they were school texts and not a
surveyor’s working notes. This had already been understood by Frank [1928:
19] (cf. above), but Frank had underplayed his insight even more than
Neugebauer did here.

A last insight into the cultural embedding of Babylonian mathematics – in
this case, of the Seleucid period – was due to Schuster. In [1930: 194] he observes
that the colophon of AO 6484, like that of other tablets published in [Thureau-
Dangin 1922], shows it to have been written by “a representative of a large family
of priests known since long from other texts from the Seleucid epoch”.

The sexagesimal system

The understanding of the sexagesimal place value system was mentioned
several times above, but some aspects of it deserve separate discussion.

I shall not go into the speculations of Thureau-Dangin, Neugebauer and
others concerning its origin: before the metrological and numerical notations
of the protoliterate period were deciphered,[42] all such attempts had to remain
speculations – some of them sensible, some of them definitely not sensible, but
never more than speculations.

Until this point, [Ungnad 1917] was not mentioned, even though this
publication was often referred to during the critical years. It was important both
for the information it gave and for the problematic traces it left.

Ungnad discussed (pp. 41f) the boasting of Assurbanipal that he was able
to “u-pa-tar I.GI A.DU.E itguruti”. He pointed out that itguru (<egērum, “to twist”,
“to be(come) twisted/confused/...”) meant “complicated”, and took patārum
to mean “solve” (that is, solve problems). Since A.DU can be read a . r á , a term
familiar from tables of multiplication as well as lexical lists, it had to mean
“multiplication”; finally, concerning I.GI, a phonetic writing of i g i , he explained
with reference to [Hilprecht 1906: 21ff] that [x] IGI y GÁL.BI = z means that
[x] : y = z, that is, that the term refers to division – which of course seemed to
make beautiful company with the multiplication.[43] On the whole, Assurbanipal
was thus supposed to have boasted that he was able to solve complicated

42 That is, until [Friberg 1978; 1979] and the definitive analysis in [Damerow & Englund
1987].
43 Ungnad’s failure to take his own article from [1916] into account indicates that he had
not yet fully realized that i g i designates the reciprocal, not a quotient in general – cf.
Neugebauer’s remark in [1930b: 187 n. 8].
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problems of division and multiplication. This interpretation of the quotation was
still repeated by Adam Falkenstein in [1953: 126].

In [1929], Neugebauer had already translated i g i as “reciprocal”. However,
in an editorial note to Schuster’s analysis of what is now known as igûm-igibûm-
problems [Schuster 1930: 196 n.1], he cites Ungnad for the insight that i g i may
mean reciprocal, but also (in the Assurbanipal-passage) “division”
simply/schlechthin. Written with sign names, the two unknown quantities dealt
with in the problems are ŠI and ŠI.BU.Ú. ŠI may also be IGI, for which reason
Schuster called them igû and šipû. Inspired by Ungnad Neugebauer now feels
tempted to translate the former term “divisor”, and since the two quantities turn
out to be each other’s reciprocals, this seems to him to suggest that the latter
term should be translated “multiplier”. Since šipû could not in any way be
connected to a known term for multiplication, he ended up by opting for Nenner
(“denominator”) and Zähler (“numerator”), though characterizing the choice as
“disputable”.

When MKT was published, ŠI.BU.Ú had become igi-bu-ù. Yet Neugebauer
still uses the same “disputable” translation of the two terms, in the absence of
more adequate words; he is quite aware and explains (MKT I, p. 349) that they
constitute a pair of reciprocal numbers (already Schuster had assumed that this
was meant by the text). The first to recognize that the two terms were
Akkadianized forms of Sumerian i g i and i g i . b i , “igi” and “its igi” was
Thureau-Dangin [1933: 183f].[44] This insight was then taken over in MCT (p.
130) by Neugebauer and Abraham Sachs.

However, the story did not end here. In H. Goetsch’s “Die Algebra der
Babylonier” [1968: 83], a problem supposedly dealing with Nenner and Zähler
is quoted – but without Neugebauer’s explanation that these names are used
in the absence of better alternatives. Nor is it revealed that they stand for a pair
of reciprocals – perhaps because this is told by Neugebauer in connection with
a different problem.

More rectilinear was the progress in the understanding of how the
sexagesimal place value system works. In [1930b: 188–193], Neugebauer described
the system constituted by tables of reciprocals and multiplication (not yet being
aware that this system is Old Babylonian and thus does not concern the large
Seleucid table of reciprocals AO 6456) – in particular that those numbers that
occur as multiplicands (Neugebauer’s Kopfzahlen) are those that turn up as

44 In [1932a: 52], Thureau-Dangin still speaks of igû and šibû.
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reciprocals,[45] the multiplicand 7 being the only exception – in Neugebauer’s
later terminology, today in general use, regular numbers. In [1931b], these results
were presented in a more systematic way and on the basis of a larger text
material; but now the irrelevance of the Seleucid material was recognized.

The two articles develop the idea that the system of tables was originally
meant as a way to express general fractions,[46] and only accidentally became
a system based on place value – in particular due to the presence of the table
with multiplicand 7, because of which the tables contained everything needed
for any multiplication. This idea (as well as the idea that creation of the place
value system was inspired by metrology, which Neugebauer had maintained
since [1927]) was made possible by neglect of the fact that more than a
millennium of sexagesimal absolute value counting precedes the place value
notation.[47] Given the apparently very sudden implementation during Ur III
(a process of which no hints were known in the 1930s), an only accidental
development is now implausible, and the development from weight metrology
(now known to be created much later than the absolute sexagesimal system)
impossible.[48]

Two more articles in Quellen und Studien B deal with the place value system:
[Neugebauer 1931c] is a mathematical analysis centred upon the notion of
regular/irregular numbers, [Neugebauer 1932c] proposes how AO 6456, the big
Seleucid table of reciprocals, might have been constructed (suggesting also that
the same method was used for the Old Babylonian standard table with its 30
or fewer entries). None of them are of specific interest for the present
investigation.

45 This observation had already been made by Hilprecht [1906: 21], but did not make much
sense in his context of “Plato’s number”.
46 This idea could possibly explain his otherwise not obvious translation of i g i / i g i . b i
as “Nenner”/“Zähler”.
47 The absolute sexagesimal system is described in [Thureau-Dangin 1898: 81f]. That it
goes back to the fourth millennium BCE was not known in 1898, nor in 1930, but in any
case it precedes every hint of use of the place value notation by many centuries; besides,
the original curviform character of its signs shows them to belong with the earliest phase
of writing.

Neugebauer does discuss the absolute system in [1927: 8–13], but mixing it up with
speculations that thwart his understanding.
48 Since this is peripheral to my topic, I shall not document these claims, just refer to
[Powell 1976] as a seminal publication.
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Neugebauer’s contributions concerned the internal structure of the place value
system. Thureau-Dangin’s Esquisse d’une historie du système sexagésimal from
[1932a] is very different in approach. It deals with other aspects of Sumerian
and Akkadian numeration too, including spoken numerals as well as the absolute
sexagesimal system and the absolute notations for fractions, and shows that
metrological systems, though compatible with sexagesimality, cannot be the
starting point of the sexagesimal system, whether place-value or absolute (while
recognizing on p. 33 that the use of g i n in the generalized sense of a sixtieth
is probably borrowed from metrology). It also points out very explicitly that the
place value system was introduced as an instrument de calcul (p. 51) and shows
how metrological tables served to translate between this “abstract system” and
the measurement of concrete quantities in the appurtenant metrologies. This
publication can thus be considered a culmination and completion of the
development of the preceding eight decades, and gives much more insight into
the overall numerical culture of ancient Mesopotamia than Neugebauer’s papers
on the topic from 1930–32. However, even though a strongly revised version
appeared in English translation in Osiris in [1939], and even though it also reveals
its author’s broad knowledge of relevant aspects of the mathematics of other
pre-Modern cultures (from ancient Egypt and Greece to Fibonacci and Stevin),
this study never had much impact on the historiography of mathematics.

Neugebauer’s project

The preceding two sections concerned what Neugebauer did concretely to
the understanding of Babylonian mathematics. This, however, was part of a
programme, which is expressed in the inaugural statements from the first issue
of Quellen und Studien B [Neugebauer, Stenzel & Toeplitz 1929: 1–2]. Here we
read:

Through the title Quellen und Studien we want to express that we see in the constant
reference to original sources the necessary condition for every serious historical
research. It shall thus be our first aim to make accessible sources, that is, to offer them
inasfar as possible in a form which not only may meet the demands of modern
philology but also, through translation and commentary, will enable the non-
philologist to check for himself the words of the original in any moment. To fulfil
the legitimate requests of both groups, philologists and mathematicians, will only
be possible if we succeed in producing close collaboration between them. To open
the road for that will be one of the main purposes of our undertaking.

The Quellen und Studien were to appear in two sections:
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One, A, Quellen, will contain the actual large editions, containing the text in its
original language, a philological apparatus and as literal a translation as possible,
which makes the text as accessible also for the non-philologist as can be done. [...].
The issues of section B, Studien, will collect articles that are closely or less closely
associated with the material that can be drawn from the sources.

The Quellen und Studien will offer contributions to the history of mathematics.
However, they do not address specialists of the history of science alone. They will
certainly propose their material in a form which may also be useful for the specialist.
But beyond that they address all those who feel that mathematics and mathematical
thought are not only concerns of a particular science but profoundly connected to
the totality of our culture and its historical development, and that a bridge can be
found between the so-called Geisteswissenschaften and the apparently so ahistorical
“exact sciences”. Our final aim is to participate in the building of such a bridge.

Unfortunately, as Neugebauer had to observe in [1934a: 204], “we still know
practically nothing about how Babylonian mathematics was situated within the
overall cultural framework” – cf. above, p. 18. The bridge he was able to build
was thus one between mathematics and highly technical Assyriological philology.
No doubt, even the general educated public (not to speak of historians of
mathematics) would find the latter field much more arcane than the former.

Another kind of programmatic statement is found in [Neugebauer 1933b:
316f][49] – a kind of elaboration of the negative conclusions of [1932b: 24].
Neugebauer starts by summing up polemically the picture of Mesopotamian
mathematics that had been derived from field plans and tables: “the level of
purely empirical mensuration, loaded with all kinds of number-mystical ballast” –
“chaldaeic wisdom” which was then supposed (cf. above, note 7) to be

continued in Pythagorean wisdom, from which by pure miracle exact Platonic
mathematics grew out: indeed a miracle, this almost unmediated transition from
Pythagorean number mysticism to a rigorous theory of irrational numbers operating
with the class separation of “Dedekind’s cut”

Thanks to “the work of Junge, Vogt, E. Sachs, Frank and others”, he goes on,
this construction had been deprived of one of its main pillars, the Pythagoras
legend. The destruction of the other main pillar, the belief in purely empirical
and numerological Babylonian mathematics, was now to be accompanied by
the introduction of a new understanding of Old Babylonian mathematics: not
at all in the style of [Greek Euclidean] geometry but rather of “pure formal-

49 The main theme of this article is the link between, on one hand, tables of cubes and
cube roots (known since Rawlinson) and a recently discovered tabulation of n3+n2, on
the other the third-degree problems of a tablet now known as BM 8200+VAT6599.
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algebraic character”. In terms of a later epoch, the programm is thus anti-
Orientalist, anti-new-wave in spirit. In 1933, readers may have observed implicit
anti-Spenglerianism.

Neugebauer still published a number of articles on Babylonian mathematics
in Quellen und Studien B and other journals during the next few years.[50] In
Vol. 4 of Quellen und Studien B from 1937–38, however, he has five articles on
ancient astronomy but nothing more on non-astronomical mathematics,
Mesopotamian or otherwise. By then we may say that his work on Babylonian
mathematics had come to an end, apart from the volume he prepared with Sachs
in 1945 (MCT), which can be seen as a mandatory supplement to MKT,
necessitated or at least invited by the new texts to which he had got access by
then. Neither the discovery and publication of a number of texts from Eshnunna
[Baqir 1950a; 1950b; 1951; 1962] nor the problematic edition of the mathematical
Susa texts (nor E. M. Bruins’s venomous slander) ever provoked him to take
up the topic again.

MKT is thus at the same time a marvellous culmination and a farewell.[51]

Whatever programmatic statement we find here may therefore be considered
definitive.

Actually, we find very little. MKT appeared in three volumes in Quellen und
Studien A in 1935–37; with due respect for Struve’s edition of the Moscow
Papyrus [1930], it was certainly the weightiest contribution to this section. As
we remember, section A was to “contain the actual large editions, containing
the text in its original language, a philological apparatus and as literal a
translation as possible, which makes the text as accessible also for the non-
philologist as can be done”. In agreement with this description of the section,

50 Among these, I shall mention in particular [Neugebauer 1934b], the first description
of the mathematical series texts.
51 It can hence be considered a paradox that Assyriologists, after the appearance of MKT,
tended to put aside any tablet containing too many numbers in place-value notation as
“at matter for Neugebauer” (as formulated to me with regret by Hans Nissen at one of
the Berlin workshops on “Concept Formation in Mesopotamian Mathematics” in the
1980s). As we have seen, the fathers and giants of Assyriology, from Hicks, Rawlinson
and Oppert to Thureau-Dangin, considered anything mathematical as very important.
Even after the revival of active work on Mesopotamian mathematics during the last three
decades and many new insights, an Encyclopedia of Ancient History planned by Blackwell
and Wiley in 2009 suggested 500 words for “Mathematics, Mesopotamian” – the same
as was dedicated to Mesopotamian hairstyles (I succeeded in raising the limit to 700
words).
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the Vorwort of vol. I (p. v) starts by stating that the purpose of the work “from
the very beginning [in 1929] was to procure a complete collection of all
mathematical cuneiform texts”, and that this aim had been achieved in the sense
that probably no essential published material had escaped notice, while all
unpublished material to which Neugebauer had had access had been included.

As mentioned above (p. 16), there is also a programmatic statement (p. viii)
that “in principle, the translation is obviously literal”, but that this principle
cannot always be respected. But that is all.

In the end of vol. III (pp. 76–80) we then find a Rückblick, a retrospect on
the three volumes. It mostly contains tentative conclusions and delineations of
open questions, but one passage (p. 79) confirms the apparently restrictive
programme formulated in the Vorwort:

It does not belong among the tasks that I have proposed for myself in this edition
to develop the consequences which can be drawn from this text material. I have
outlined them within a broader framework in my Vorlesungen [Neugebauer 1934a/JH],
and sketched the connections to Greek mathematics in a work “Zur geometrischen
Algebra” [Neugebauer 1936/JH]; I hope to finish in the not too distant future a
detailed investigation of all questions pertaining to the history of terminologies [which
never appeared/JH].

Still, the following page – apart from indexes and reproductions of tablets the
final page of the work – draws some general conclusions. These pertain not least
to the nature of and conditions for the development of early mathematics (p.
80):

Since our knowledge of these things is of relatively recent date, and current datings
had to be pushed considerably, there is an obvious danger to overestimate the
mathematics of the Babylonians. In order to somehow gloss over the lack of a basis
in sources, many familiar books change elementary mathematical things into
“propositions” and “discoveries” that must be ascribed to great men. It seems to me
that we should not stamp the Babylonians as such discoverers. What is often
overlooked and cannot be sufficiently emphasized is the terrible difficulty and
slowness of the development of the very simplest fundamental mathematical concepts,
first of all of a genuine computational technique. This, however, is not the
achievement of a single person; it can only be understood within a historical process,
inextricably attached to the emergence of a whole culture.

So, the broader programme of the Quellen und Studien had not been forgotten –
only the limits imposed by available sources (and by the lack of relevant sources)
prevented Neugebauer from filling it out.
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Why Neugebauer, why Göttingen?

As we have seen, many outstanding Assyriologists had been interested in
everything mathematical they could get their hands on. Gradually, they had come
to understand the many different metrologies well (except those of the proto-
literate period). Assyriologists’ attempts to understand the two CT IX texts and
the Strasbourg texts had yielded important insights into the mathematical
terminology; actually, most of the basic vocabulary for mathematical operations
was already acceptably well understood in 1928, thanks to Weidner, Zimmern,
Ungnad and Frank. When it came to understanding such texts, however, progress
was blocked.

On the other hand, once the breakthrough had been effectuated by
Neugebauer, Struve and Schuster, even Thureau-Dangin was able to participate
in the new development. What was so special, we may ask, about Neugebauer
and his Göttingen circle, which allowed the opening of a road which even the
most eminent of Assyriologist had not been able to find on his own?

Other Assyriologists may have been blocked by their expectation that the
Babylonians could have engaged in nothing but “empirically based” practical
calculation. As cited (above, p. 18), this was the opinion expressed by Meissner
in his survey from 1925. Some, like Frank, may have been stopped by the habit
to translate all numbers into Arabic numerals, sometimes mistaking orders of
magnitude (and, in general, by not understanding to the full the floating-point
nature of the sexagesimal place-value notation). Many will surely have had a
mathematical training that did not suffice as support for the mathematical fantasy
required for the task.

None of this is valid for Thureau-Dangin, except perhaps the low expectations
concerning the level of the Babylonians[52] – nor indeed for Allotte de la Fuÿe,
ancient polytechnicien who, though born in 1844, was still quite active, but mostly
interested in third-millennium documents.[53]

Assyriologists, including Thureau-Dangin, were of course interested in many
other topics than mathematics. As long as nothing beyond practical calculation
was expected to exist, they may simply not have looked for it; once it was known
there was something to be found, that situation may have changed. After all,

52 His characterization of AO 6484 as “arithmetical operations” (above, p. 12) might suggest
exactly such low expectations.
53 In 1930 he published an article on protoliterate (Jemdet Nasr) metrology and
mensuration, in 1932 another one on AO 6456, the Seleucid table of reciprocals. On his
mathematical interest and competence, see [de Genouillac 1939].

- 26 -



however, it only changed radically in the case of Thureau-Dangin, as illustrated
by Wolfram von Soden’s case. Von Soden was certainly interested in mathematics:
he wrote extensive and thorough reviews of MKT in [1937], of TMB in [1939]
and of TMS in [1964]; I also experienced his interest in the mathematical area
personally in correspondences I had with him during the 1980s. He was even
(as far as I am aware of) the first to suspect publicly that the picture of
Babylonian mathematics constructed by Neugebauer and Thureau-Dangin was
too modernizing [von Soden 1937: 189–191], which might well have spurred him
to pursue this particular interest. Apart from the reviews, though, only two
publications from his industrious hand deal with mathematics as such:[54] an
analysis of a number of problem texts from Eshnunna from [1952], and a
collaborative work [Gundlach & von Soden 1963] treating a problem text from
Eshnunna and one from Susa. Even in Thureau-Dangin’s case his full
concentration of matters mathematical only lasted some five years, from 1932
to 1936. This can be seen in his “Notes assyriologiques”, containing miscellaneous
observations on the material he worked on: during these years, almost everything
in these notes concerns mathematics and its applications; before 1932 and after
1936, that is not the case.

In any case, Neugebauer and his collaborators initiated a breakthrough where
nobody else had succeeded. It is important not to leave out from this observation
the collaborators and participants in the seminar: the contributions of Schuster,
Struve, Waschow and Schott, all fully trained and active Assyriologists, are very
visible in Quellen und Studien B, and explicitly acknowledged by Neugebauer
in MKT and elsewhere.[55]

54 I disregard publications where general a priori ideas about the nature of Mesopotamian
mathematics enter as part of a broader argument, such as [von Soden 1936].
55 It may perhaps be adequate to recapitulate some elements of what these four
Assyriologists did later in connection with Mesopotamian mathematics.

Schuster published oft-cited works on Sumero-Babylonian bilingual texts in 1938 and
on Hatto-Hittite bilinguals in 1974 and 2002; he lived until 2002, but seems not to have
worked on mathematical texts after 1930.

Struve, as curator of the cuneiform collection of the Ermitage in Leningrad, analyzed
its corpus of Ur III accounts, which induced him to draw a very grim picture of the social
system that implemented the place value system in its social engineering [Struve 1934] –
a picture that has now been amply confirmed by Robert Englund [1990]. He lived until
1965 but seems never to have published more on “mathematics proper”.

Waschow prepared an edition of the important Seleucid problem text BM 34568,
published in MKT III (pp. 14–22). In his dissertation from [1936], an edition of letters
from the Kassite period, he states in the (unpaginated) CV that he had entered active
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Neugebauer’s personal stamina and competence may have been very
important – we are dealing with the statistics of very small numbers, where
personalities count for very much and become primary facts allowing no full
explanation from or reduction to general factors. But it was probably important
for this stamina and competence to come into play, both that Neugebauer himself
was not primarily an Assyriologist but a historian of mathematics (in the
dichotomy of [Neugebauer, Stenzel & Toeplitz 1929], not primarily “a philologist”
but “a mathematician”), and that he was able to enter into close collaboration
with and inspire a number of Assyriologists.[56] As a non-Assyriologist, he could
concentrate (at least until 1937) on Babylonian mathematics alone, and thereby
come to know the totality of the corpus much better than anybody had done
before 1929; The preface of MKT I (p. v) lists how few higher-level texts were
at all known by then. However, his deep respect for sources, as reflected in the
programme for Quellen und Studien, caused him to seek philological collaboration
and advice, and kept him free of the danger of rational reconstruction based on
what the Babylonians might have done, if only they had been more or less Greek
or more or less modern mathematicians. In Leopold von Ranke’s words (in the
sense von Ranke really used them in 1824 [von Ranke 1885: vii], against lazy

army service in 1934 and was at the moment serving as a non-commissioned anti-aircraft
officer while intending to continue scholarly activity in parallel. In 1938 he published
4000 Jahre Kampf um die Mauer, about siege techniques since Old Babylonian times. I can
find no later traces of him and assume that he is one of those collaborators of Neugebauer
who according to Vogel (private communication) fell in the war.

According to Neugebauer (MKT I, p. ix), Schott contributed intensely to MKT. He
was also one of Neugebauer’s intended collaborators in the publication of the corpus
of Babylonian astronomical texts, planned around 1935 (see the description in [Neugebauer
1938]) – not realized immediately because of the war. Schott died at the end of the war
in 1945 [Thompson 2010]. He had also collaborated with the astronomer Paul Neugebauer
on other aspects of Mesopotamian astronomy, and he translated the Gilgameš-epic in
1934 (eventually published with revisions by von Soden in 1958).

As we see, “mathematics proper” did not stay central to those three who had the
possibility to make Assyriological work after 1936. Though also engagin in other matters,
Thureau-Dangin was actually more tenacious as regards mathematics, as expressed in
his [1940a; 1940b].
56 As Neugebauer tells with gratitude in [1927: 5], he has also been well counselled and
trained by Anton Deimel during a fairly long stay at the Pontificium Institutum Biblicum
in Rome, as his initial interest in Mesopotamian mathematics (as a parallel elucidating
the foundations of Egyptian mathematics) had first been stimulated by works of Thureau-
Dangin [1898 ; 1921] and Deimel [1922].
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invention and too hasty generalization), Neugebauer’s proudly modest aim was
to find out wie es eigentlich gewesen.

Correspondingly, it was probably decisive for the way in which Thureau-
Dangin could contribute when the parallel work of the two began, that his
starting point was that of the philologist, a reader and interpreter of texts, also
in his approach to the history of mathematics (where he is much more akin to
for instance Kurt Vogel than to Neugebauer). Even his aim is covered by von
Ranke’s maxim.

Thureau-Dangin’s starting point had been the classical stance of
Assyriologists: in order to understand Mesopotamian sources and civilization,
it was mandatory to understand metrology and mathematics. Reversely, for
Neugebauer, the Göttingen seminar and the Quellen und Studien programme,
understanding Babylonian mathematics was necessary for understanding
mathematics as the product of an ongoing historical process. However, it was
essential for the outcome that both had left behind these motivations (or at least
behaved as if they had), and took up “Babylonian mathematics” as a research
project that was of major interest in itself and needed no further excuse.

For the fruitful outcome of the race it was also essential that the two, in spite
of the unmistakeable animosity which gradually developed between them,[57]

in general remained respectful when citing each other and constructive in their
mutual criticism, and even allowed each other access to whatever material was
needed.[58] Great moral models for all scholars, and giants on whose shoulders
it was always a pleasure to stand.
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